Introduction

Gastrostomy is an invasive procedure undertaken to ensure long-term enteral nutrition in patients who have difficulty with the use of an oral route for feeding. Several methods have been described for the gastrostomy procedure, including laparoscopic- and fluoroscopy-guided techniques and endoscopic methods. Although gastrostomy is a safe procedure, it brings a variety of major and minor complications that range from 4.9 to 50%. These complications could be due to anesthesia or surgery and include bleeding, leakage into the abdominal cavity, peritonitis, sepsis, and organ injury. Mortality rates range from 0.5 to 1.2%, while morbidity is 3 to 12%. In this experimental study in rats, we aimed to report a new method named percutaneous magnetic gastrostomy, which could be faster, simpler, and easier to use in comparison with conventional methods.

Materials and methods

The study began by obtaining 2012/37 numbered approval from the Abant Izzet Baysal University Board of Animal Research Ethics. During the first step of the procedure, a feeding tube with a small magnet attached to the tip would be inserted into the stomach of a rat. For the second stage, the magnetic tip of the feeding tube would be attracted with the help of an externally applied magnetic field through the abdominal wall of rats with minimal incisions without any complications.
force, which would cause the magnetic tip to rise to the abdominal wall. A small incision at the point of the raised abdominal wall would be made, and that part of the stomach would be pulled outside of the body. Eventually, the gastrostomy tube would be fixed to the protruding part of the gastric wall.

To implement this technique in rats, as shown in Figure 1a, a small cylindrical neodymium magnet (2x5 mm) was attached to the tip of a 6F feeding tube. To pinpoint the location of the magnetic tip of the tube introduced via an orogastric route into the rat’s abdomen, a bigger and more powerful magnet (2x5 cm, Figure 2b) was prepared. The magnets were dipolar, chromium-plated, neodymium, iron, and boron alloy Nd2Fe14B type magnets.

![Figure 1a: The feeding tube with the small magnet attached to its tip.](image)

![Figure 1b: The magnet used to generate a strong magnetic field outside the abdomen.](image)

The magnetic field strength of the magnets was measured while considering the distances in the laboratory of Abant Izzet Baysal University, Department of Physics, using a Leybold Didactic GmbH 51662 Gaussmeter (Table 1). Both magnets were attracted to each other from a distance of 53 mm.

<table>
<thead>
<tr>
<th>Distance (cm)</th>
<th>2x5 mm magnet</th>
<th>2x5 cm magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>20</td>
<td>105</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1: The strengths and distance of the magnets used in the magnetic field.

Seven adult male Wistar albino rats with an average weight of 200 to 250 g were used in this study. The rats fasted overnight prior to the study but were given free access to water. All of the surgical and medical interventions in the experimental animals were performed under general anesthesia by the same team, and standard sterile conditions were observed. For all subjects, the doses of general anesthetics were 50 mg/kg dose of ketamine HCl (Ketalar 50 mg/ml, Eczacibasi, Istanbul) intramuscularly and 5 mg/kg Xylazine (Rompun 20 mg/ml, Bayer, Istanbul) intramuscularly.

A bigger magnet with a strong magnetic field and dimensions of 2x5 cm was used to localize the feeding catheter with the magnetic tip in the abdominal cavity that had been inserted orogastrically. The tubercle formed by the inner tip of the feeding tube in the abdominal cavity as a response to the strong magnetic field was forced to move in a circular motion to minimize the likelihood of internal organ parts being caught between the abdominal and the gastric walls. Later, an incision of approximately 0.5 cm was made from the area of the tubercle on the abdominal wall, and the tip of the feeding tube was pulled out of the body by the force of the magnetic field (Fig. 2a).

A number 8 Foley catheter was inserted into the stomach, and the gastric and abdominal walls were taken up together and distended by inflating the balloon (Figure 2b). After that, 3/0 silk was used for fixation, and the gastrostomy was complete. The rats were fed with an enteral feeding solution via gastrostomy for two days, then re-laparotomy was performed. The rats were checked for leakage into the abdomen, perforation of the stomach, esophagus, spleen, liver, intestine, or vasculature, or any kind of organ injury. Complications attributable to the gastrostomy or to its location were evaluated. After laparotomy under anesthesia, the rats were sacrificed by administering high doses of anesthetic drugs.

![Figure 2a: The gastric wall and magnetic tip of the feeding tube, which was extracted using the magnetic field to pull the tube from the abdominal wall incision.](image)

![Figure 2b: Placed feeding tube.](image)

Results

Magnetic percutaneous gastrostomy was successfully performed in seven rats. There was no evidence of obstruction or signs of intolerance in any of the ani-
mals after the procedure. One rat died on the first day after the procedure. An autopsy was performed in that rat. Leakage was found in the abdominal cavity, but no signs of macroscopic peritonitis were seen. In the other rats, under general anesthesia and after providing the necessary sterility on the anterior abdominal wall, 4-cm incisions were made at midline for laparotomy. During the laparotomy, there were no signs of injury to the esophagus, stomach, spleen, liver, small intestine, colon, or vascular structures. Healthy rats had no evidence of peritoneal leakage or peritonitis. Normal saline had been given for a leak test, and no signs of leakage around the gastrostomy were identified. No internal organ herniation or compression between the stomach and the abdominal wall was observed.

Discussion

Enteral nutrition is extremely beneficial, especially in the care and treatment of critically ill patients hospitalized in intensive care units. In patients with an intact gastrointestinal tract but difficulty with oral feeding, the enteral route should be used. There are different methods for enteral use, such as nasogastric tube, percutaneous fluoroscopic gastrostomy, open or laparoscopic gastrostomy, and percutaneous endoscopic gastrostomy (PEG). Each of these methods, however, has its own complications, and there are other challenges, such as the necessity of skilled staff and complicated expensive equipment. Moreover, anesthesia-related events can be added these issues.

Cope et al. were the first to use intestinal magnets to create compression necrosis and produce anastomosis in animal subjects. Magnets have also been used for therapeutic purposes in different areas, such as the biliary and urinary tracts. Earlier experimental studies with magnets have been carried out in large animals, including pigs and dogs. In a study conducted in rats using a magnet, magnetic compression gastrostomy (MCG) was performed. The magnetic technique that we used in our study involved a feeding probe tipped with a neodymium magnet that could be detected and pulled out by a powerful magnet placed outside the abdominal wall. A small incision was made at the appropriate place to reach the feeding tube and then attached the stomach to produce a fistula to the skin. An 8 F-tipped balloon catheter was used in the rats as a permanent feeding tube.

Percutaneous endoscopic gastrostomy (PEG) was performed for the first time in 1980 according to Gauderer and colleagues. This method greatly facilitated the use and further development of the gastrostomy over time. However, PEG is a surgical procedure, so it requires an experienced surgical team and expensive, large, cumbersome endoscopic devices that are difficult to transfer from one place to another. This requirement in the absence of a specifically trained team and equipment necessitates the classical surgical technique, which increases costs and complications due to the anesthesia. Therefore, we developed a new method of magnetic percutaneous gastrostomy that would be cost effective and could be carried out by all intensive care physicians at the bedside with local anesthesia without the need for specific equipment. With this new method, the technological equipment required for the gastrostomy procedure would not be necessary, and the costs would be reduced as well.

The most serious complications related to PEG are bowel perforation and intra-abdominal organ injuries. Other complications include cardiopulmonary deterioration, aspiration, hemorrhage, and perforation, which have been observed at a rate of 0.005 to 0.01%. In our study, there was one rat that had leakage into its abdominal cavity and no other complications. Mortality did not occur during the experiment. These findings suggest that the MPG method can be performed with a low complication rate. Patients who need gastrostomy are often intensive care patients, and these patients are more suitable for the PEG procedure than other gastrostomy methods that are more invasive.

Endoscopy laboratories can be far from intensive care units, and the transportation of endoscopic devices is another problem that may prevent the widespread use of this method. Additionally, possible malfunction of the expensive endoscopic devices due to transportation can increase the costs of the procedure. If gastrostomy with the help of a magnetic probe in humans can be achieved, costs, complications, and difficulties due to transportation will be avoided. Furthermore, this method is accessible to all physicians instead of only surgeons or gastroenterologists with experience in endoscopy, which will allow more patients who need this procedure to undergo it.

Conclusions

In this experimental study, we demonstrated that a new method of gastrostomy with the help of a magnetically directed feeding tube can be successful-
ly and safely achieved using a minimal incision on the abdominal wall of a rat. This new gastrostomy technique will need to be developed in larger mammals to lead to its ultimate use in human patients.

References

Acknowledgements

We would like to express our deepest appreciation to all those who provided us the possibility to complete this report. A special gratitude We give to Prof. Erol Ayaz and Vet.Med Ayhan Çetinkaya whose contribution, helped us to coordinate the processing of laboratory animals in all aspects.